Confinement of Quarks through π_1 Topological objects

Nigel Cundy Weonjong Lee, YongMin Cho

Seoul National University

January 25, 2015

YongPyong-High1, January 25 2015

- The mechanism of quark confinement is one of the big remaining theoretical questions in QCD
- It is a non-perturbative feature it cannot be analysed in perturbation theory
- At low temperatures and densities, there are no free quarks, only mesons, Baryons, ...
- The strong interaction provides a strong linear potential between quarks at intermediate distances
- Quarks have the property of colour (red, blue, green)
- Mesons, Baryons, ... are colourless a Meson consists of a red quark and an anti-red quark
- Here we focus on confinement of Mesons
- Two questions need answering:
 - 1. Why is there a linear force between quarks at intermediate distances?
 - 2. Why are mesons colourless?

- We are primarily interested in QCD,
- QCD is a non-Abelian gauged quantum field theory
- The Guage Bosons are described by objects which satisfy the Lie algebra of SU(3)
- The phenomenon of confinement is also present in 'SU(2) QCD'
- SU(2) QCD is simpler but has the same underlying principles
- QCD describes the interactions between two types of object:
 - Fermion fields $\psi,$ the quarks and anti-quarks
 - Gauge fields A_{μ} , the eight types of gluons

- One way of thinking about the interaction between quarks and gluons is to put QCD on a space time lattice
- The fermion fields exist on the sites of the lattice
- Their positions in each direction are an integer multiple of a lattice spacing \boldsymbol{a}
- To preserve gauge invariance, whenever we translate a fermion field, we multiply it by the gauge link $U_{\mu}(x_1, x_2)$

$$\psi(x_1) \xrightarrow{\text{translation}} U_{\mu}(x_1, x_1 + a\hat{\mu})\psi(x_1 + a\hat{\mu}))$$
$$U_{\mu}(x_1, x_1 + a\hat{\mu}) = P\left[e^{ig\int_{x_1}^{x_1 + a\hat{\mu}}A_{\mu}dx^{\mu}}\right]$$

• A simple covariant derivative operator is defined as

$$\nabla_{\mu}\psi(x) = \lim_{a \to 0} \frac{1}{a} \left[U_{\mu}(x_1, x_1 + a\hat{\mu})\psi(x + a\hat{\mu}) - \psi(x) \right]$$

YongPyong-High1, January 25 2015

4/22

• The gauge field is defined as

$$igA_{\mu}(x) = U_{\mu}^{\dagger}(:,x)\partial_{\mu}^{(x)}U_{\mu}(:,x)$$

- U is an SU(N) matrix (N > 1),
- A is a $N \times N$ Hermitian traceless matrix
- $A_{\mu} = A^{a}_{\mu}\lambda^{a}$ where λ^{a} are the Pauli or Gell-Mann matrices
- The field is non-Abelian, so different $U{\rm s}$ don't commute with each other

- Consider a curve C, a $R \times T$ rectangle in the xt plane
- Split the curve into infinitesimal segments (σ = distance around curve)
- Take the product of Us for each segment around the curve
- Take the limit as the length of the segments $\delta\sigma \to 0$

$$W_L[C, U] = \lim_{\delta \sigma \to 0} \mathbf{P} \left[\prod_{\sigma \in C} U_{\mu[\sigma]}(x[\sigma]) \right]$$

 \bullet In Euclidean space time, this represents the force V(R) between a pair of static quarks propagating through time

$$\langle \operatorname{tr} W_L[C,U] \rangle = A_0 e^{-V(R)T} + \dots$$

- If $V(R)T \propto$ area of the loop \Rightarrow a linear potential
- If each individual Wilson Loop, W_L , scales like $e^{i\chi}$, where the mean $\langle |\chi| \rangle \propto$ the area of the loop \Rightarrow a linear potential.

- How are we to interpret an area law Wilson Loop?
- Consider an Abelian gauge theory
- No need for path ordering:

$$W_L[C, U] = \prod_{\sigma \in C} U_{\mu[\sigma]}(x[\sigma]) = e^{ig \oint A_{\mu}dx^{\mu}} = e^{ig \int d^2 S^{\mu\nu}F_{\mu\nu}}$$
$$S = \text{Surface Bound by } C \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

- Suppose we have lines of large electric flux
- χ counts how many lines of flux pass through the surface
- Number of flux lines \propto Area of Loop \Rightarrow Area law

- Confinement is non-perturbative
- Why does perturbation theory fail?
- Perturbation theory gets the QCD vacuum wrong
- The perturbative expansion is around gA = 0
- That is not the actual QCD vacuum
- In practice, the QCD vacuum contains many objects or lumps
- These are characterised by a non-zero topological index
- Proposed topological objects include Monopoles, Instantons, Vortices, Membranes, ...
- It is plausible that these objects play a role in quark confinement

- Currently two dominant models of confinement:
 - 1. The Dual Meissner effect: An analogue to the type II superconductor, with magnetic monopoles playing the role of the electrons, pushing the electric field into 1D flux tubes
 - 2. The Vortex theory: There exist one dimensional topological objects in the QCD Vacuum; these form long lines of electric flux
- In this talk, I shall discuss a third model
- The topological objects of interest are neither monopoles or vortices
- But first, we need to figure out how to apply this intuitive picture for a non-abelian theory

- We make use of the gauge-invariant Abelian decomposition
- We start by choosing a field $\theta(x) \in SU(N)$ (or $\theta_x \in SU(N)$)
- We require that this field is differentiable
- We then construct $n_a = \theta \lambda_a \theta^{\dagger}$
- We select the Abelian directions $n_j \equiv n_3, n_8, \ldots$
- We choose fields \hat{A}_{μ} and X_{μ} so that

$$A_{\mu} = \hat{A}_{\mu} + X_{\mu}$$
 $D_{\mu}[\hat{A}]n_j = 0$ $tr(n_j X_{\mu}) = 0$

- \hat{A} represents colour-neutral gluons; X coloured gluons
- This has a known and unique solution,

$$\hat{A}_{\mu} = \frac{1}{2} n_{j} \operatorname{tr}(n_{j} A_{\mu}) + \frac{i}{4g} [n_{j}, \partial_{\mu} n_{j}]$$

$$F_{\mu\nu}[\hat{A}] = \frac{n_{j}}{2} \left[\partial_{\mu} \operatorname{tr}(n_{j} A_{\nu}) - \partial_{\nu} \operatorname{tr}(n_{j} A_{\mu}) \right] + \frac{i}{8g} \frac{n_{j}}{g} \operatorname{tr}(n_{j} [\partial_{\mu} n_{k}, \partial_{\nu} n_{k}]).$$

YongPyong-High1, January 25 2015

• On the lattice, we can write this as

$$\begin{aligned} U_{\mu,x} &= \hat{X}_{\mu,x} \hat{U}_{\mu,x}, \\ \hat{U}_{\mu,x} n_{j,x+\hat{\mu}} \hat{U}_{\mu,x}^{\dagger} - n_{j,x} &= 0 \quad \operatorname{tr}(n_{j,x} (\hat{X}_{\mu,x} - \hat{X}_{\mu,x}^{\dagger})) = 0 \end{aligned}$$

- Choose solution where $tr\hat{X}_{\mu}$ is maximised
- $U \equiv$ standard gauge link constructed from $A (U \sim e^{igA_{\mu}\delta x_{\mu}})$
- $\hat{U} \equiv$ gauge link constructed from \hat{A} ($\hat{U} \sim e^{ig\hat{A}_{\mu}\delta x_{\mu}}$)
- \hat{X} corresponds to X ($\hat{X} \sim e^{igX_{\mu}\delta x_{\mu}}$)
- The gauge transformations are $(\Lambda_x \in \mathrm{SU}(N))$

$$\begin{split} U_{\mu,x} \to &\Lambda_x U_{\mu,x+\hat{\mu}} \Lambda_{x+\hat{\mu}}^{\dagger} & \theta_x \to &\Lambda_x \theta_x, \\ \hat{U}_{\mu,x} \to &\Lambda_x \hat{U}_{\mu,x+\hat{\mu}} \Lambda_{x+\hat{\mu}}^{\dagger} & \hat{X}_{\mu,x} \to &\Lambda_x \hat{X}_{\mu,x} \Lambda_x^{\dagger} \end{split}$$

• Paths of gauge links constructed from \hat{U} are gauge covariant.

- So how do we choose θ_x ?
- We will extract the static potential from the Wilson Loop
- We choose θ_x so that along the Wilson Loop $\hat{U}_{\mu} = U_{\mu}$.
- This θ_x contains the eigenvectors of the Wilson Loop operator starting and ending at position x.
- This guarantees that the Wilson Loop for the restricted field is identical to the Wilson Loop for the non-Abelian field.
- Furthermore,

$$\hat{U}_{\mu}(x)n_{j,x+\hat{\mu}}\hat{U}_{\mu}(x)^{\dagger} - n_{j,x} = 0 \quad \Leftrightarrow \quad [\theta_x^{\dagger}\hat{U}_{\mu,x}\theta_{x+\hat{\mu}},\lambda_j] = 0,$$

•
$$\theta_x^{\dagger} \hat{U}_{\mu,x} \theta_{x+\hat{\mu}}$$
 is Abelian and gauge invariant

• We therefore take our Wilson Loop operator W_L

$$W_L[C, U] = W_L[C, \hat{U}] = \lim_{\delta \sigma \to 0} \prod_{\sigma \in C} \hat{U}_{\mu[\sigma]}(x[\sigma])$$

• Insert a pair of θ fields between each gauge link

$$W_L[C,U] = \lim_{\delta\sigma\to 0} \theta \left[\prod_{\sigma\in C} \theta_{x[\sigma]}^{\dagger} \hat{U}_{\mu[\sigma]}(x[\sigma]) \theta_{x[\sigma+\delta\sigma]} \right] \theta^{\dagger}$$

•
$$\theta_x^{\dagger} \hat{U}_{\mu,x} \theta_{x+\hat{\mu}} = e^{i\hat{u}_{\mu}^j \lambda_j \delta x_{\mu}}$$

$$W_L[C,U] = \theta \left[e^{ig \oint \lambda_j \hat{u}^j_\mu dx_\mu} \right] \theta^{\dagger}$$

- We have removed the path ordering.
- The coloured field X does not contribute to confinement mesons are colour-neutral.

$$\hat{A}_{\mu} = \frac{n_j}{2} \operatorname{tr}(n_j A_{\mu}) + \frac{i}{4g} [n_j, \partial_{\mu} n_j] = \frac{n_j}{2} \operatorname{tr}(n_j A_{\mu} - i\lambda_j \theta \partial_{\mu} \theta^{\dagger}) + \frac{i}{g} \theta \partial_{\mu} \theta^{\dagger}$$
$$F_{\mu\nu}[\hat{A}] = \frac{n_j}{2} \left[\partial_{\mu} \operatorname{tr}(n_j A_{\nu}) - \partial_{\nu} \operatorname{tr}(n_j A_{\mu}) \right] + \frac{i}{8g} n_j \operatorname{tr}(n_j [\partial_{\mu} n_k, \partial_{\nu} n_k])$$

- Both $F_{\mu\nu}[\hat{A}]$ and \hat{A}_{μ} depend on two terms:
 - 1. A function of both A_{μ} and θ (the Maxwell term)
 - 2. A function of θ alone (the Topological term) (Topological field strength = $H^{3,8}_{\mu,\nu}$).
- Parametrise the SU(2) θ in terms of a, c, d

$$\theta = e^{ia\phi}e^{id\lambda_3}, \quad \phi = \begin{pmatrix} 0 & e^{ic} \\ e^{-ic} & 0 \end{pmatrix}, \quad \bar{\phi} = \begin{pmatrix} 0 & ie^{ic} \\ -ie^{-ic} & 0 \end{pmatrix}$$

- d makes no contribution $(n_3 = \theta \lambda_3 \theta^{\dagger})$ fix it to zero
- $\theta^{\dagger}\partial_{\mu}\theta = -i\lambda_{3}\sin^{2}a\partial_{\mu}c + i\bar{\phi}\sin 2a\partial_{\mu}c + i\phi\partial_{\mu}a$
- $\operatorname{tr}(n_3[\partial_{\mu}n_3,\partial_{\nu}n_3]) = \partial_{\mu}a\partial_{\nu}c \partial_{\nu}a\partial_{\mu}c.$

$$\theta = \begin{pmatrix} \cos a & i \sin a e^{ic} \\ i \sin a e^{-ic} & \cos a \end{pmatrix}$$

- c is ambiguous at a=0 or $a=\pi/2$,
- \bullet Can have non-zero winding number around these points without a non-differentiability in θ
- We want to map a and c to E^4 ; (Wilson Loop in xt plane)

 $(t, x, y, z) = r(\cos\psi_3, \sin\psi_3\cos\psi_2, \sin\psi_3\sin\psi_2\cos\psi_1, \sin\psi_3\sin\psi_2\sin\psi_1).$

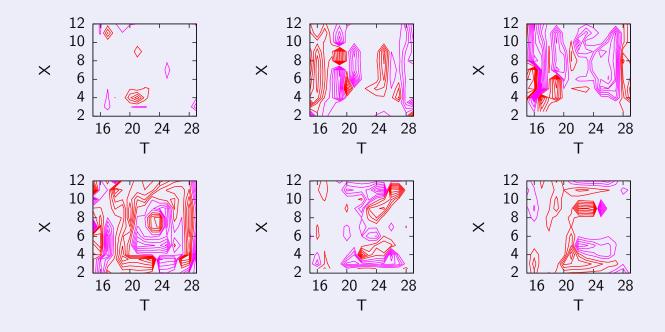
- There are two types of topological object available
 - 1. The Wang-Yu magnetic Monopole (π_2 topology): $a = \psi_1/2, c = \nu_{WY}\psi_2.$
 - 2. Another object (π_1 topology) with $a(r, \psi), c = \nu_T \psi_3$, Appears at $a \sim 0$ or $a \sim \pi/2$.
- ν_{WY} and ν_T are integer winding numbers.
- Both winding numbers are invariant under continuous gauge transformations and deformations of the gauge field.

- We apply Stoke's theorem to our Abelian representation of the Wilson Loop
 - 1. A surface integral over the continuous part of $F_{\mu\nu}[\hat{A}]$
 - 2. Line integrals around each topological singularity
- This line integral resembles $\oint dx_{\mu}(\sin^2 a)\partial_{\mu}c$.
- It is proportional to the winding number ν_T (the monopoles do not directly contribute).
- Since the number of these objects is proportional to the area, we expect an area law scaling for the Wilson Loop.

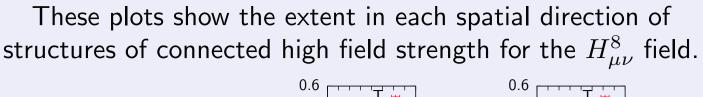
- It is easy to calculate the topological field strength surrounding each of these objects.
- We characterise $H^{3,8}_{\mu\nu}$ in terms of 'Electric' and 'Magnetic' fields.
 - Monopoles: Nothing in the E_x field
 1-D lines of high field strength in B_x, B_y and B_z parallel to the T axis; or
 1-D lines in B_x, E_y and E_z parallel to the X axis
 - 2. π₁ objects: 0-D Points in the E_x field, accompanied by some of
 1-D lines in B_x, B_y and B_z parallel to the T axis; and/or
 1-D lines in B_x, E_y and E_z parallel to the X axis

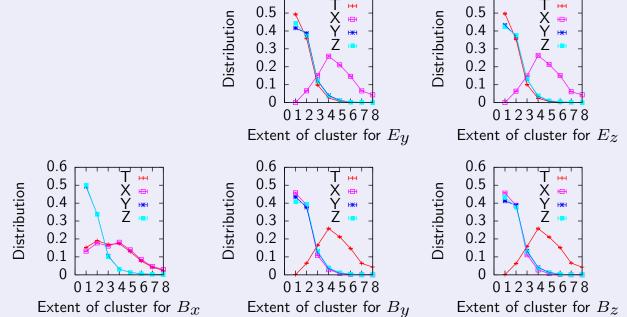
[All plots on a $16^3 \times 32 \ \beta 8.52$ TILW gauge action quenched ensemble, $a \sim 0.08 {\rm fm}$].

The X (left) Y (middle) and Z (right) components of the Electric (top) and Magnetic (bottom) Abelian Field Strengths



The plots show the field strength $H^8_{\mu\nu}$ (red and purple contour lines) on a slice of the lattice in the XT plane.

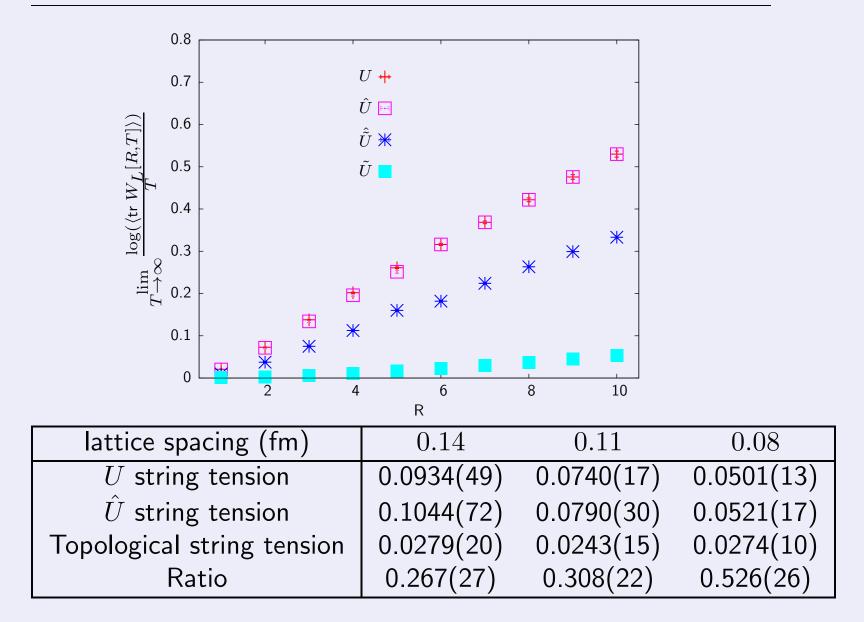




The location of the strings are correlated with the spatial location of the points in the E_x field.

So it seems like the topological vacuum does indeed contain both monopoles and the π_1 topological objects.

- So does the topological part dominate the string tension ρ calculated from the restricted Abelian field \hat{A} ?
- We construct a highly smoothed gauge field \tilde{A}_{μ} , respects gauge invariance but is not confining (using Stout Smearing)
- Apply the Abelian decomposition, using original $\theta \Rightarrow \tilde{A}_{\mu}$
- Calculate the string tension for this field, and compare it to the results from the U and \hat{U}
- This allows us to extract the topological part of the string tension gauge covariantly
- Interested in the ratio of the topological string tension to the full string tension
- If this ratio is one, then confinement is fully accounted for by topological objects including those we are studying
- Our lattice results (still not finalised) show a strong dependence on the lattice spacing
- Volume dependence (not shown here) is negligible



YongPyong-High1, January 25 2015

21/22

Conclusions

- We have proposed a new model which explains:
 - The area Law scaling of the Wilson Loop
 - Why Mesons are colour neutral
- The field strength seems to back up the model we see the objects we expect
- However, we cannot yet say whether or not the topological part dominates the string tension
- Thus we cannot say how much of the confining potential comes from the objects studied here
- Further Theoretical and Numerical work is still needed to fully explore our model